000 02991nam a2200313| 4500
001 83990
005 20220110132118.0
010 _a978-3-319-21347-7
_dcompra
090 _a83990
100 _a20190128d2015 k||y0pory50 ba
101 _aeng
102 _aCH
200 _aModel-free prediction and regression
_bDocumento eletrn̤ico
_ea transformation-based approach to inference
_fDimitris N. Politis
210 _aCham
_cSpringer International Publishing
_d2015
215 _aXVII, 246 p.
_cil.
225 _aFrontiers in Probability and the Statistical Sciences
300 _aColocaȯ̂: Online
303 _aThe Model-Free Prediction Principle expounded upon in this monograph is based on the simple notion of transforming a complex dataset to one that is easier to work with, e.g., i.i.d. or Gaussian. As such, it restores the emphasis on observable quantities, i.e., current and future data, as opposed to unobservable model parameters and estimates thereof, and yields optimal predictors in diverse settings such as regression and time series. Furthermore, the Model-Free Bootstrap takes us beyond point prediction in order to construct frequentist prediction intervals without resort to unrealistic assumptions such as normality. Prediction has been traditionally approached via a model-based paradigm, i.e., (a) fit a model to the data at hand, and (b) use the fitted model to extrapolate/predict future data. Due to both mathematical and computational constraints, 20th century statistical practice focused mostly on parametric models. Fortunately, with the advent of widely accessible powerful computing in the late 1970s, computer-intensive methods such as the bootstrap and cross-validation freed practitioners from the limitations of parametric models, and paved the way towards the `big data' era of the 21st century. Nonetheless, there is a further step one may take, i.e., going beyond even nonparametric models; this is where the Model-Free Prediction Principle is useful. Interestingly, being able to predict a response variable Y associated with a regressor variable X taking on any possible value seems to inadvertently also achieve the main goal of modeling, i.e., trying to describe how Y depends on X. Hence, as prediction can be treated as a by-product of model-fitting, key estimation problems can be addressed as a by-product of being able to perform prediction. In other words, a practitioner can use Model-Free Prediction ideas in order to additionally obtain point estimates and confidence intervals for relevant parameters leading to an alternative, transformation-based approach to statistical inference.
410 _x2624-9987
606 _91379
_aEstats̕tica matemt̀ica
606 _93627
_aEstats̕tica
680 _aQA276
700 _933443
_aPolitis
_bDimitris N.
801 _gRPC
_aPT
856 _uhttps://doi.org/10.1007/978-3-319-21347-7
942 _2lcc
_cF
_n0