000 02403nam a22003015i 4500
001 65101
005 20210429121207.0
010 _a978-1-4419-7892-9
_dcompra
090 _a65101
100 _a20150401d2011 k||y0pory50 ba
101 _aeng
102 _aUS
200 _aGeometric design of linkages
_bDocumento electrónico
_fJ. Michael McCarthy, Gim Song Soh
210 _aNew York, NY
_cSpringer
_d2011
215 _aXXVIII, 448 p.
225 _aInterdisciplinary Applied Mathematics
300 _aColocação: Online
303 _a  This book is an introduction to the mathematical theory of design for articulated mechanical systems known as linkages. The focus is on sizing mechanical constraints that guide the movement of a workpiece, or end effector, of the system. The function of the device is prescribed as a set of positions to be reachable by the end effector; and the mechanical constraints are formed by joints that limit relative movement. The goal is to find all the devices that can achieve a specific task. Formulated in this way the design problem is purely geometric in character. Robot manipulators, walking machines, and mechanical hands are examples of articulated mechanical systems that rely on simple mechanical constraints to provide a complex workspace for the end effector. This new edition includes research results of the past decade on the synthesis of multiloop planar and spherical linkages, and the use of homotopy methods and Clifford algebras in the synthesis of spatial serial chains. One new chapter on the synthesis of spatial serial chains introduces the linear product decomposition of polynomial systems and polynomial continuation solutions. The second new chapter introduces the Clifford algebra formulation of the kinematics equations of serial chain robots. Examples are used throughout to demonstrate the theory.  Review of First Edition: "...I found the author had provided an excellent text that enabled me to come to terms with the subject. Readers with an interest in the area will find the volume rewarding." -The Mathematical Gazette (2001)
606 _aProjecto de máquinas
680 _aTJ230
700 _aMcCarthy
_bJ. Michael
701 _957842
_aSoh
_bGim Song
_4070
801 _aPT
_gRPC
856 _uhttp://dx.doi.org/10.1007/978-1-4419-7892-9
942 _2lcc
_cF
_n0