Catálogo bibliográfico FCT/UNL
Image from Google Jackets

Traffic congestion control by PDE backstepping [Documento eletrónico] / Huan Yu, Miroslav Krstic

Main Author: Yu, HuanCoauthor: Krstic, Miroslav, co-aut.Language: eng.Country: Switzerland, Swiss Confederation, Cham.Publication: Cham : Springer International Publishing, Birkhäuser, 2022Description: XVII, 356 p.ISBN: 978-3-031-19346-0.Series: Systems & Control: Foundations & ApplicationsSubject - Topical Name: System theory | Control theory | Differential equations | Control engineering Online Resources:Click here to access online
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Copy number Status Date due Barcode
E-Books Biblioteca NOVA FCT Online Não Ficção Q295.SPR FCT (Browse shelf(Opens below)) 1 Available 96284

This monograph explores the design of controllers that suppress oscillations and instabilities in congested traffic flow using PDE backstepping methods. The first part of the text is concerned with basic backstepping control of freeway traffic using the Aw-Rascle-Zhang (ARZ) second-order PDE model. It begins by illustrating a basic control problem - suppressing traffic with stop-and-go oscillations downstream of ramp metering - before turning to the more challenging case for traffic upstream of ramp metering. The authors demonstrate how to design state observers for the purpose of stabilization using output-feedback control. Experimental traffic data are then used to calibrate the ARZ model and validate the boundary observer design. Because large uncertainties may arise in traffic models, adaptive control and reinforcement learning methods are also explored in detail. Part II then extends the conventional ARZ model utilized until this point in order to address more complex traffic conditions: multi-lane traffic, multi-class traffic, networks of freeway segments, and driver use of routing apps. The final chapters demonstrate the use of the Lighthill-Whitham-Richards (LWR) first-order PDE model to regulate congestion in traffic flows and to optimize flow through a bottleneck. In order to make the text self-contained, an introduction to the PDE backstepping method for systems of coupled first-order hyperbolic PDEs is included. Traffic Congestion Control by PDE Backstepping is ideal for control theorists working on control of systems modeled by PDEs and for traffic engineers and applied scientists working on unsteady traffic flows. It will also be a valuable resource for researchers interested in boundary control of coupled systems of first-order hyperbolic PDEs.

There are no comments on this title.

to post a comment.
Moodle da Biblioteca Slideshare da Biblioteca Siga-nos no Issuu Twitter da Biblioteca Instagram da Biblioteca Facebook da Biblioteca Blog da Biblioteca