Catálogo bibliográfico FCT/UNL
Normal view MARC view ISBD view
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Collection Call number Copy number Status Date due Barcode
E-Books Biblioteca da FCTUNL
Online
Não Ficção QA564.SPR FCT 94276 (Browse shelf) 1 Available
Browsing Biblioteca da FCTUNL Shelves , Shelving location: Online , Collection code: Não Ficção Close shelf browser
QA564.SPR FCT 82798 Lectures on algebraic geometry II QA564.SPR FCT 82800 Lectures on algebraic geometry I QA564.SPR FCT 82805 Algebraic geometry I QA564.SPR FCT 94276 Using algebraic geometry QA564.SPR FCT 95424 Tropical algebraic geometry QA564.SPR FCT 95532 Weight filtrations on log crystalline cohomologies of families of open smooth varieties QA564.SPR FCT 95603 Lectures on algebraic geometry I

Colocação: Online

In recent years, the discovery of new algorithms for dealing with polynomial equations, coupled with their implementation on fast inexpensive computers, has sparked a minor revolution in the study and practice of algebraic geometry. These algorithmic methods have also given rise to some exciting new applications of algebraic geometry. This book illustrates the many uses of algebraic geometry, highlighting some of the more recent applications of Gröbner bases and resultants. The book is written for nonspecialists and for readers with a diverse range of backgrounds. It assumes knowledge of the material covered in a standard undergraduate course in abstract algebra, and it would help to have some previous exposure to Gröbner bases. The book does not assume the reader is familiar with more advanced concepts such as modules. For the new edition, the authors have added a unified discussion of how matrices can be used to specify monomial orders; a revised presentation of the Mora normal form algorithm; two sections discussing the Gröbner fan of an ideal and the Gröbner Walk basis conversion algorithm; and a new chapter on the theory of order domains, associated codes, and the Berlekamp-Massey-Sakata decoding algorithm. They have also updated the references, improved some of the proofs, and corrected typographical errors. David Cox is Professor of Mathematics at Amherst College. John Little is Professor of Mathematics at College of the Holy Cross. Dona l O’Shea is the Elizabeth T. Kennan Professor of Mathematics and Dean of Faculty at Mt. Holyoke College. These authors also co-wrote the immensely successful book, Ideals, Varieties, and Algorithms.

There are no comments for this item.

Log in to your account to post a comment.
Moodle da Biblioteca Slideshare da Biblioteca Siga-nos no Issuu Twitter da Biblioteca Instagram da Biblioteca Facebook da Biblioteca Blog da Biblioteca